## 17102

## 13141

2 Hours / 50 Marks
Seat No.

|  |  |
| :---: | :---: |

Instructions : (1) All Questions are compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

## Marks

1. Attempt any NINE of the following : 18
(a) Define: (i) Stress (ii) Strain.
(b) Define Poisson's ratio.
(c) Define: (i) Velocity gradient (ii) Terminal Velocity.
(d) State Newton's law of Viscosity.
(e) State: (i) Pascal's Law (ii) Archimedes Principle.
(f) Define: (i) Adhesive force (ii) Capillarity.
(g) Define: (i) Calorie (ii) Absolute zero temperature.
(h) Define : (i) Temperature gradient (ii) Sp. heat of a gas at constant volume.
(i) State laws of refraction of light.
(j) State principle of optical fibre.
(k) Define: (i) Frequency (ii) Wavelength.
(l) Define stationary wave. State principle of superposition of waves.
2. Attempt any FOUR of the following :
(a) Define:
(i) Young's modulus
(ii) Bulk modulus
(iii) Rigidity modulus

State relation between them.
(b) Define:
(i) Streamline flow
(ii) Turbulent flow

Give significance of Reynold’s number.
(c) Distinguish between isothermal and adiabatic processes.
(d) Derive an equation for prism formula.
(e) Distinguish between progressive and stationary wave.
(f) A capillary tube of diameter 0.2 mm is dipped into a liquid of density $0.85 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and angle of contact $24^{\circ}$. If the liquid rises by 40 mm in the tube, find surface tension of the liquid.
3. Attempt any FOUR of the following :
(a) State three gas laws. What is NTP ?
(b) State three modes of transfer of heat with one example of each. State law of thermal conductivity of heat.
(c) State Stoke's law of viscosity and obtain an equation for coefficient of viscosity of a liquid.
(d) An aluminium wire 3 mm in diameter and 4 m long is used to support a mass of 50 kg . What is the elongation of the wire if Young's modulus of aluminium is $7 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ ?
(e) Distinguish between transverse and longitudinal waves.
(f) A tuning fork of frequency 512 Hz resonates with an air column of length 14.4 cm .
The end correction is 6 mm .
Calculate velocity of sound in air.

